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Abstract
Objective. This review paper provides a comprehensive overview of ear-electroencephalogram
(EEG) technology, which involves recording EEG signals from electrodes placed in or around the
ear, and its applications in the field of neural engineering. Approach.We conducted a thorough
literature search using multiple databases to identify relevant studies related to ear-EEG technology
and its various applications. We selected 123 publications and synthesized the information to
highlight the main findings and trends in this field.Main results. Our review highlights the
potential of ear-EEG technology as the future of wearable EEG technology. We discuss the
advantages and limitations of ear-EEG compared to traditional scalp-based EEG and methods to
overcome those limitations. Through our review, we found that ear-EEG is a promising method
that produces comparable results to conventional scalp-based methods. We review the
development of ear-EEG sensing devices, including the design, types of sensors, and materials. We
also review the current state of research on ear-EEG in different application areas such as
brain–computer interfaces, and clinical monitoring. Significance. This review paper is the first to
focus solely on reviewing ear-EEG research articles. As such, it serves as a valuable resource for
researchers, clinicians, and engineers working in the field of neural engineering. Our review sheds
light on the exciting future prospects of ear-EEG, and its potential to advance neural engineering
research and become the future of wearable EEG technology.

1. Introduction

Electroencephalography (EEG) is a widely used,
non-invasive method for measuring and recording
the electrical activity of the brain. Traditional EEG
involves the placement of electrodes on the scalp,
which are secured in place using a combination
of electrolyte gel and a tight-fitting elastic cap to
ensure proper contact between the electrodes and the
skin [1]. While this approach provides high-quality
EEG signals, it may not be suitable for long-term
monitoring or use outside of a laboratory or hos-
pital setting. To overcome this challenge, research-
ers have proposed various approaches. For instance,

one approach involves the utilization of different elec-
trode types, such as dry electrodes, which do not
require electrolyte gels. Another approach involves
redesigning the EEG system to enhance wearability
and accessibility, making it suitable for a broader
range of applications, especially for long-term mon-
itoring in daily-life usage [2]. These modifications
aim tomake EEG portable and wearable, allowing for
greater flexibility and convenience in its use.

Ear-EEG is a novel EEG acquisition technique
that aims to improve the practicality of EEG meas-
urement. This technique involves the placement of
electrodes in or around the ear to capture EEG
signals [3, 4]. The use of ears as recording sites
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offers several advantages over traditional scalp-based
EEG. Firstly, the absence of hair in these areas facil-
itates improved skin-to-electrode contact, resulting
in enhanced signal quality and increased user com-
fort. Secondly, the discreet placement of the elec-
trodes around the ear makes them less noticeable to
others, which can help alleviate the social awkward-
ness that is often associated with conventional EEG
systems. Additionally, the ears can serve as an anchor-
ing point for the device to attach to the user’s body
and are also easily reachable by the user’s hands. This
provides an added advantage for ease of wearabil-
ity and self-management. It also opens up the pos-
sibility for touch-based interactions with the device.
This increased practicality and comfort make ear-
EEG a promising tool for long-term monitoring and
for use in daily-life applications. A significant draw-
back of ear-EEG in comparison to the conventional
scalp-based method lies in its limited coverage area.
Studies such as [5, 6] have demonstrated that ear-EEG
primarily captures neural signals originating from
the temporal lobe. Consequently, this limitation may
lead to a reduced range of detectable EEG signals or
lower signal quality compared to the more compre-
hensive coverage provided by scalp-based EEG. The
primary focus of early ear-EEG research was to assess
the range of EEG signals that could be detected using
this technique and its potential applications, as well as
to compare its performance with conventional EEG
methods.

Ear-EEG technology can be differentiated into
two categories based on its electrode placement and
device design: in-ear EEG [3] and around-ear EEG
[4]. In-ear EEG involves electrodes positioned inside
the ear canal or on the ear, while around-ear EEG, also
known as the ‘behind-ear’ method, places electrodes
around the ear area, usually beneath the hairline. Both
methods have their own advantages and trade-offs.
While in-ear EEG offers greater discretion, with the
sensing device hidden inside the ear, it may also block
external sound depending on the device design. On
the other hand, around-ear EEG may be less discreet
than in-ear EEG, but it covers a wider area, making it
more practical for detecting a broader range of brain
signals. Studies have demonstrated that ear-EEG can
detect meaningful neural activity and has a multitude
of applications, including but not limited to monit-
oring mental state and neurological conditions, and
brain–computer interfaces (BCIs). It is important to
emphasize that in an ear-EEG system, all electrode
placements, including reference and ground, should
remain within the ear region. However, this review
also covers some wearable EEG systems that incor-
porate electrodes placed in areas such as the scalp or
forehead, in addition to those on the ear region. For
the sake of simplicity, we will refer to these systems as
hybrid EEG systems throughout the remainder of this

review. While a comprehensive discussion of hybrid
EEG systems falls beyond the scope of this review,
they will be briefly discussed alongside certain ear-
EEG systems with similar device designs (refer to
section 3). This approach aims to help readers under-
stand that wearable EEG devices can extend their
recording sites beyond a specific area. We believe this
inclusion will contribute to advancing the field of
wearable EEG systems.

Previous research reviews have explored the topic
of ear-EEG. Ne et al conducted a review of 92 art-
icles focusing on the acquisition of bio-signals using
in-ear sensing devices, with only 48 studies specific-
ally involving EEG [7]. Roddiger et al reviewed 271
publications relating to ear-worn sensing devices and
their applications in physiological monitoring, move-
ment and activity tracking, interaction, and authen-
tication. However, this review still only covered 54
articles on ear-EEG [8]. Our work, on the other
hand, specifically focuses on both in-ear and around-
ear ear-EEG technology, highlighting its exceptional
wearability and potential for real-life applications
compared to traditional EEG acquisition methods.
Our contribution provides a comprehensive under-
standing of the history and current state of the art in
ear-EEG technology and its potential as the future of
wearable brain monitoring systems.

We conducted a thorough literature review of 123
research articles to enhance our understanding of ear-
EEG and examine its efficacy as an EEG acquisition
method and its potential applications. The primary
focus of our literature review was to answer three
main research questions:

(1) What are the crucial factors influencing the
development and setup of ear-EEG systems, and
how do these choices impact the range of applic-
ations, strengths, and limitations of ear-EEG
technology?

(2) What are the diverse applications and potential
uses of ear-EEG as an EEG acquisition method,
and how does it contribute to various fields?

(3) What are the limitations and drawbacks associ-
ated with the ear-EEG method, and what poten-
tial strategies or approaches can be employed to
address and mitigate these challenges?

This paper is organized into three main sections,
each addressing one of the above key questions. The
first section covers EEG sensing methods, includ-
ing the device design (e.g. shape and material),
sensors used (e.g. electrode types and placement),
and signal processing modules (e.g. the EEG amp-
lifier and necessary electronic parts). Many of the
studies we reviewed usedmanual electrode placement
on the ear area and traditional stationary EEG sens-
ing devices, and conducted experiments only in a
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laboratory setting to validate ear-EEG performance.
However, many studies also propose innovative and
functional wearable ear-EEG systems for both in-ear
and around-ear approaches. In the second section
of our review, we delve into the capabilities of ear-
EEG methods. We explore the undertaken research,
assessing the range of EEG signals attainable through
ear-EEG, and evaluating the performance of the ear-
EEG method within various experimental setups for
diverse applications. In the final section, we dis-
cuss the challenges associated with EEG acquisition
using ear-EEG methods, mainly the limited cover-
age area by the ear-EEG sensing device. We examine
signal processing techniques aimed at enhancing the
EEG signal’s signal-to-noise ratio (SNR) andmachine
learning methods to improve ear-EEG performance,
enabling it to match the performance of conventional
scalp-based EEG methods.

2. Reviewmethodology

This review aims to provide a comprehensive over-
view of ear-EEG technology, including the current
state-of-the-art devices and methods used for acquir-
ing ear-EEG, the different techniques used for pro-
cessing and analyzing ear-EEG signals, and the diverse
range of applications in which ear-EEG has been
examined. We conducted a comprehensive search of
electronic databases, including Google Scholar, IEEE
Xplore, and PubMed, using a combination of the fol-
lowing keywords as our search terms: ‘ear-EEG’, ‘in-
ear EEG’, ‘around-ear EEG’, ‘behind-the-ear EEG’, and
‘ear-based EEG’. Additional studies were identified
through manual searches of reference lists from rel-
evant articles that met our inclusion criteria.

In this review, we included studies that used ear-
EEG technology to record brain activity in humans in
the ear area. It is important to mention the variabil-
ity in nomenclature pertaining to the different types
of ear-EEG. For instance, some literature employs
the terms ‘in-ear EEG’ and ‘in-the-ear EEG’ inter-
changeably, while others utilize terms like ‘around-
ear EEG,’ ‘around-the-ear EEG,’ ‘behind-ear EEG,’
and ‘behind-the-ear EEG’ interchangeably as well. To
ensure clarity, this review article uniformly adopts
the term ‘in-ear EEG’ to denote EEG acquired from
internal ear structures, encompassing the ear canal
and concha. Similarly, the term ‘around-ear EEG’ is
employed to refer to EEG acquired from the circular
perimeter encompassing the ears. Figure 1 illustrates
the skin areas covered by each type of EEG examined
in this review article, including scalp EEG (gray),
around-ear EEG (orange), and in-ear EEG (blue).
The figure also depicts the in-ear structure, with the
ear canal and concha highlighted as the common
sites for in-ear EEG recording. While ear-EEG tech-
nologies are typically designed for wearable purposes,

we also considered studies that recorded EEG sig-
nals around the ear area using conventional, sta-
tionary EEG acquisition setups. Studies that used
ear-worn devices to acquire other biological sig-
nals such as electrooculogram (EOG), electromyo-
gram (EMG), electrocardiogram (ECG), and pho-
toplethysmography (PPG) were excluded unless the
device also recorded EEG signals in addition to one
of the other mentioned signals. We extracted relevant
data from each included study, including the study
design, sample size, ear-EEG device used, electrode
placement, data processing and analysismethods, and
its applications.

A total of 123 relevant articles were identified in
our comprehensive search for research on ear-EEG
technology. Figure 2 displays the number of ear-EEG
articles published each year, from 2011 toMarch 2023
(the time of writing this review article). Despite a
steady increase in the number of studies conducted
each year, the overall amount of research on ear-EEG
is still relatively small, which could limit the gener-
alizability of our findings. Moreover, the majority of
the studies we reviewed had small sample sizes, which
could impact the reliability and validity of the res-
ults. Ear-EEG technology is still in its early stages, and
the range of its applications is not yet fully under-
stood.While this review article summarizes the devel-
opment history of ear-EEG technology and highlights
its potential as the future of wearable EEG technology,
further research is necessary to evaluate its potential
in real-world settings fully.

3. Development of ear-EEG sensing
methods

In this section, we trace the development of ear-
EEG sensing devices and examine the latest advance-
ments in design. For each study, we examine the
sensor components, including the material and type
of electrodes, as well as the placement and number
of electrodes. We evaluate the design of the device
in terms of practicality and appearance and assess
its wearability and potential for real-world use. Some
studies present a comprehensive system, comprising
sensors, a battery, and a printed circuit board (PCB)
for signal processing, computing, and data trans-
mission. After reviewing 123 research articles, it was
found that 79 of them utilized in-ear EEG acquisi-
tion techniques, while 47 of them utilized around-
ear EEG acquisition techniques. Three of the articles
utilized both in-ear and around-ear EEG methods.
Eleven of the around-ear EEG research studies did
not employ anywearable sensors specifically designed
for around-ear EEG acquisition. Instead, they either
manually attached the electrodes to the ear area or
obtained EEGdata from conventional scalp-EEG caps
with channels positioned nearest to the ears. Figure 3
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Figure 1. Skin coverage comparison of different EEG types: scalp EEG (grey), around-ear EEG (orange), and in-ear EEG (blue).
Detailed depiction of in-ear structure highlighting common in-ear electrode placement sites: ear canal (pink) and concha (green).

Figure 2. The number of publications relevant to ear-EEG over time from 2011 to 2023 (∗March).

presents a schematicmap that provides an overviewof
the ear-EEG articles, classified according to the design
of the ear-EEG sensing device. The figure includes the
number of articles (N) in each category. However, it
should be noted that the size of each box is not pro-
portional to the number of articles.

3.1. In-ear methods
The concept of recording EEG from within the ear
was first introduced by Looney and their team in 2011
before the term ‘ear-EEG’ had even been published.
The first in-ear EEG sensing device, referred to as
the ‘in-the-ear’ (ITE) recording platform, was created
by embedding three AgCl electrodes on a custom-
made earpiece manufactured in the same process as
a hearing-aid device [9, 10]. In these initial works,
the ITE electrodes were used as an extension of the

conventional EEG setup, with the recorded EEGbeing
referenced and grounded at the ear-lobe and chin,
respectively. Following the successful confirmation of
alpha activity in EEG recordings obtained from ITE
electrodes, with correlations and coherence shown to
be excellent when compared to on-scalp electrodes,
the researchers continued to improve their ear-EEG
sensing device. They added an additional electrode to
each side of the earpiece, making the system truly an
ITEmeasurement setup with all electrodes, including
reference and ground electrodes, situated within the
ear [3, 11]. For each in-ear EEG sensing earpiece, the
reference electrodewas positioned on the inferior side
of the ear canal, and the ground electrode was placed
at the top of the concha. This fully integrated in-ear
sensing device was successfully evaluated for its abil-
ity to record various types of EEG signals commonly
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Figure 3. Overview map of the reviewed articles on ear-EEG, categorized according to the design of the ear-EEG sensing device.
∗Hybrid EEG systems containing electrodes beyond the ear area.

used in BCI technology. This has led to increased
interest in ear-EEG from the EEG and BCI research
community ever since.

3.1.1. In-ear EEG sensing device design
3.1.1.1. Personalized earpiece
Following the original ear-EEG research, the major-
ity of in-ear EEG devices were designed as elec-
trodes embedded in personalized earpieces [12–22],
with only minor adjustments from the original works
such as changing the material for the earpieces and
electrodes [23–26] or making the electrodes an act-
ive type [27]. The process of creating these personal-
ized earpieces involved taking a wax impression of the
individual’s ear, 3D scanning the impressed ear shape,
creating a computer-aided design (CAD) model of
the earpiece, and using additive manufacturing tech-
nology. To simplify the earpiece fabrication process,
some researchers eliminated the 3D modeling step
and instead used moldable materials that were per-
sonalized to the research subject’s ear shape as the
base for their in-ear EEG sensing device. They also
changed the electrode material to make it easier to
fabricate and more suitable for alternative earpiece
materials. For example, in [28, 29], moldable plastic
beads (InstaMorph) were chosen as the material for
making the personalized earpieces.

3.1.1.2. Generic earpiece
Although the personalized earpiece design approach
offered a perfect fit for each individual’s ear shape
and resulted in high-quality EEG signals, the device
fabrication process was expensive, complicated, and
time-consuming. To address this issue, researchers
began developing in-ear EEG device designs that were

generic and could accommodate the biological struc-
ture of any ear shape. In 2013, the team that pioneered
in-ear EEG technology presented one of the first gen-
eric designs of an in-ear EEGdevice [30]. Their design
featured a conical-shaped earplug made of biocom-
patible silicone rubber. In recent years, some innovat-
ive and effective designs for generic in-ear EEG sens-
ing devices have been proposed [31–34]. For instance,
Kaveh et al [32] used a 3D scan of the in-ear structure
to create a unique, generic design that can fit all users.
Their earpieces feature four outward cantilevers, each
of which acts as an individual electrode and applies
pressure to the ear canal, along with two larger elec-
trodes positioned on the concha for reference and
ground. For their final design [33], the earpiece body
was 3D printed with flexible resin for greater comfort.
In 2022, Paul et al [34] introduced theweDAQ system,
a complete wireless electrophysiology data acquisi-
tion system that can simultaneously acquire multiple
biological data streams, including in-ear EEG. Their
weDAQ system features a unique generic design for
in-ear EEG sensing, composed of two planar ‘cro-
codile’ PCBs that fit together and form a 3D in-ear
apparatus with multiple electrodes on its surface.

3.1.1.3. Viscoelastic earpiece
A large number of studies use commercially available
memory foam or other viscoelastic materials as the
base for their in-ear EEG device designs. Like the gen-
eric silicone earplug presented in [30], these designs
are often conical in shape, resembling an earplug,
with or without a hole in the middle for the audit-
ory pathway. Viscoelastic materials such as memory
foam are often used as a substitute for silicone or
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plastic because the earpieces made from these mater-
ials can still have some of the drawbacks of hard
materials, which do not guarantee a perfect fit to the
shape of the ear canal. This imperfect fit can lead to
motion artifacts and may require an electrically con-
ductive gel to overcome the issue. Additionally, it has
been reported that conductive silicone may not be
a suitable material for long-term use in EEG elec-
trodes due to its degradation over several months,
which can significantly increase the impedance level
[35]. The idea of using viscoelastic material for in-
ear EEG earpieces was first proposed by Goverdovsky
et al in 2015 [35]. The first viscoelastic in-ear EEG
earpiece consisted of a memory foam base mater-
ial with electrodes attached to its surface. The vis-
coelasticity of the material allowed the earpiece to
be easily and comfortably worn and perfectly fit into
the user’s ear canal. This property also ensured that
energy from abrupt motion was absorbed, leading
to lower motion artifacts. The viscoelastic approach
to in-ear EEG has been utilized in numerous stud-
ies, demonstrating its capabilities in acquiring in-ear
EEG for various applications, however, the device
design has undergone only minor adjustments since
its origination [36–46]. Some studies directly use
commercially available flexible electrode as in-ear
EEG sensing device. For example, Ahn et al [47] used
a Gold Tip Trode electrode (8500370, Sanibel Supply)
for their in-ear EEG sensing apparatus. This dispos-
able electrode is made of foam wrapped in gold foil
and is typically used for recording electrocochleo-
graphy. Likewise, Guermandi et al [48] presented an
in-ear-EEG system that uses a conductive elastomer
spike electrode covered with Ag/AgCl paint as an in-
ear electrode.

While viscoelastic material is a great option for
the base of the in-ear EEG electrode, providing com-
fort and a perfect fit to the ear canal, simply designing
the whole earpiece in an earplug shape presents some
drawbacks when compared to other designs, such as
personalized earpieces or generic earphones. Firstly,
the viscoelastic earplug lacks an exterior hanger to
fixate the earpiece to the concha, which can cause it
to easily slip out of the user’s ears, especially when
the earplug electrodes are wired to the external pro-
cessing module. Secondly, viscoelastic earplugs com-
pletely occlude the ear canal, blocking sound trans-
mission, which could potentially disrupt the user’s
daily activities. Additionally, the small covering area
of the earplug limits the number of electrodes that
can be included, particularly when the reference and
ground channels are necessary to create a truly ITE
measurement setup.

3.1.1.4. Earpieces in the shape of earphones or earbuds
An alternative strategy for creating generic in-ear EEG
sensing devices involves taking inspiration from con-
ventional in-ear earphones or earbuds. Among the
reviewed articles, two distinct approaches emerged.

The first approach involves directly affixing con-
ductive materials and wiring to the earbud tips,
utilizing them as electrodes [49–52]. The second
approach revolves around creating the earbud tips
themselves from a flexible conductive material, util-
izing the entire earbud tip as an electrode [53, 54].
In-ear EEG sensing devices designed as earphones
or earbuds offer a versatile and stylish EEG system
suitable for long-term use in daily life. By incor-
porating flexible or viscoelastic materials at the tip
of the device, it can be easily fitted into the ear
canal, providing a comfortable and secure fit. Unlike
the viscoelastic earplug design discussed earlier, the
earphone design includes an exterior structure that
can fixate the earpiece, thus overcoming the chal-
lenges associated with the earplug design. Moreover,
the earphone design provides a broader coverage
of the ear, enabling the positioning of the reference
and ground electrodes at the concha area, thereby
creating a comprehensive in-ear measurement
setup.

3.1.2. In-ear EEG electrodes
3.1.2.1. Electrode types
As evident from the reviewed articles, dry passive
electrodes are the prevailing choice for making in-ear
EEG sensing devices. This preference can be attrib-
uted to the challenges associated with applying con-
ductive gel or paste within the confines of the narrow
ear canal. Ensuring precise application of the con-
ductive paste solely onto the intended electrode, while
preventing inadvertent bridging between electrodes,
appears to be a formidable task.Moreover, this applic-
ation processmight be uncomfortable for users, as the
ear canal poses difficulties for cleaning residual con-
ductive substances after using the in-ear EEG device.
Nonetheless, it is crucial to acknowledge that cer-
tain studies do incorporate a small amount of saline
solution or conductive gel to ensure optimal contact
between the skin and the electrode andmaintain a low
impedance level. However, it is important to note that
as of now, no subject survey or reported feedback has
addressed the comfort levels associated with the wet
in-ear electrode approach in any study.

In personalized earpieces, pure silver or Ag/AgCl
is commonly favored material for making electrodes,
while studies like [33] have investigated electrodes
created via electroless plating using metals like palla-
dium, copper, and gold. In studies employing simpli-
fied fabrication methods, like those by [28, 29], elec-
trodes were created by manually applying conductive
silver paste (ELCOAT, CANS) directly onto the sur-
face of the molded earpieces.

Conductive fabric is a practical material choice
for in-ear EEG electrodes, particularly in viscoelastic
earpieces [35, 51, 52]. Its remarkable flexibility and
ability to adapt to the earpiece’s shape, even as the
earpiece compresses during insertion into the ear
canal, make it a suitable option.
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As outlined in the preceding section, certain
studies have crafted electrodes utilizing conductive
flexible polymers as their material of choice. For
example, Lee et al [53] fabricated earbud-shaped
electrodes using a composite of carbon nanotubes
and polydimethylsiloxane (CNTs/PDMS). The CNT
material provided outstanding electrical, mechan-
ical, and thermal properties, while the biocompat-
ible PDMS allowed for high gas and water permeab-
ility and adaptability to various fabrication methods.
Similarly, Dong et al [54] utilized a conductive rub-
ber material called silvered glass silicone, which con-
sists of silver, glass silver, and silver conductive grains
mixed with silicone rubber, for their earbud-shaped
electrodes. This electrode type offers elevated comfort
due to its softness and flexibility, and boasts remark-
able versatility as it can be molded into diverse shapes
and designs. Nonetheless, its manufacturing process
is intricate, demanding specialized tools and expert-
ise. Moreover, certain commercially available options
may be pre-configured into shapes that may not align
with a researcher’s or developer’s intended design, as
seen with the conductive elastomer spike electrode
utilized in [48].

Furthermore, within the scope of the reviewed
in-ear EEG studies, merely two investigations intro-
duce in-ear EEG devices featuring active electrodes
[27, 47]. This could be attributed to the inherent chal-
lenge posed by the compact size of in-ear EEG devices
when compared to other EEG sensing methods. The
smaller form factor complicates the inclusion of elec-
tronic circuits required to render the electrodes active.

3.1.2.2. Electrode number and location
In addition to the design and material of the device,
the number of EEG channels is an important factor
to consider when designing a wearable EEG acquisi-
tion system. While a small number of EEG channels
can reduce the cost and time required for fabricating
the sensing device, as well as potentially lowering the
computational cost during signal processing and ana-
lysis, a high number of EEG channels provides a better
spatial resolution of the EEG and can possibly yield
better results.

The majority of in-ear EEG studies examined
in this review employ a limited number of chan-
nels, often comprising fewer than eight within each
earpiece. This tendencymight arise from the compact
dimensions of the in-ear structure. Consequently, the
electrodes must also be small to fit snugly within the
ear, thereby rendering the fabrication process more
intricate. The complexity of this situation becomes
particularly noticeable when dealing with handcraf-
ted electrodes.

Some studies have designed in-ear EEG sensing
devices with a high number of in-ear-EEG channels.
The first high-density ear-EEG device was presented
by Kappel et al in 2017 [55]. Each personalized
earpiece had 15 uniformly embedded electrodes

on each side, made from circular titanium pins
coated with IrO2. The high-density ear-EEG record-
ing enables researchers to compare neural activity
with scalp-based EEGmethods, which helps to invest-
igate how different cortical sources are mapped to
the ear. Additionally, this method provides a way
to identify optimal electrode placements for the tar-
get application. Another variation of a high-density
in-ear EEG device was presented in the works of
Paul et al in 2019 [56, 57]. This device featured 17
small Ag/AgCl electrodes fitted into each personalized
earpiece, instead of the IrO2 electrodes used in earlier
works.

While there is not a universally accepted inter-
national standard for the nomenclature and arrange-
ment of in-ear EEG electrodes, the methodology pro-
posed by the original in-ear EEG research group [3]
stands out for its ingenuity and meticulous electrode
positioning. This particular approach designates each
electrode as EXY, wherein X signifies either L or R,
denoting the left or right side of the ear respectively,
andY indicates the electrode’s position from the let-
ters A to L (e.g. ERA, ERB,... ERL). Among these
designations, A, B, and C correspond to the upper,
middle, and lower regions of the concha, while D rep-
resents the earlobe. The remaining eight electrodes
are positioned within the ear canal, evenly spaced
at distinct angles. Starting with E at the posterior
point of the ear canal, the order proceeds clockwise
toward the posterior direction. We strongly advocate
for the adoption of this methodology in future in-ear
EEG studies, as it promotes consistency and coher-
ence within the research field.

Reference and ground electrodes are typically
placed at the concha (EXA, EXB, EXC), a location
comparatively more distant from the brain than the
ear canal. Nonetheless, in numerous studies, addi-
tional electrodes are employed with separate cables
attached to the earlobe, around-ear area, or mast-
oid, functioning as reference and ground points. This
practice results in their system not aligning with a
true in-ear EEG setup. In the pursuit of optimal wear-
ability, we advocate for the development of a truly
in-ear measurement device with integrated reference
and ground electrodes, devoid of externally visible
electrodes, thus maximizing discreetness. We recom-
mend that future developers of in-ear EEG systems
take this into account during equipment design or
devise innovative solutions to maintain both discre-
tion and wearability, even if external out-of-ear elec-
trodes are integrated.

3.2. Around-ear methods
In 2012, Wang et al [58] investigated the feasibil-
ity of measuring steady-state visual evoked poten-
tials (SSVEPs) from non-scalp regions, including the
forehead/face, behind-the-ear, and neck areas, intro-
ducing the novel concept of measuring and util-
izing EEG from non-scalp regions, specifically the
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area around the ear. This concept has important
implications for the development of new EEG-based
technologies that could lead to more accessible and
wearable EEG measurements. In 2015, the advent of
around-ear EEG technology gained significant recog-
nition within the research community, primarily due
to the introduction of cEEGrid [4]. This innovat-
ive device marked a turning point in around-ear
EEG research, prompting numerous studies explor-
ing its efficiency, applications [59], and inspiring
the development of other around-ear EEG sensing
devices. In contrast to the extensive development of
in-ear EEG sensing devices, the progress in around-
ear EEG sensing technology, however, has been lim-
ited. Themajority of research in this area has relied on
either cEEGrids or alternatively, manually attached
conventional EEG electrodes to the around-ear area.
This section explores the sensor and hardware design
presented in the around-ear EEG studies.

3.2.1. Around-ear EEG sensor design
3.2.1.1. Adhesive c-shaped electrode array
The most widely used around-ear EEG sensor in
research is cEEGrid [4]. The cEEGrid is a flexible
printed c-shaped electrode array specifically designed
to be placed around the user’s ears. Its flexprintmater-
ial consists of several layers of biocompatible polyam-
ide, where the electrodes are laid on the upmost sur-
face. This type of around-ear EEG sensor cannot be
attached to the user’s skin directly and requires the
use of double-sided adhesive tape or other adhesive
material to attach them to the skin around the user’s
ears.

Although the signal processing hardware has to
be considered to judge the wearability of the whole
system, this type of around-ear EEG sensor is very
comfortable to the users, and its adhesive property
to the user’s skin also ensures the fixation in elec-
trode placements even in the long-term use. Its draw-
backs are that the adhesive parts of the sensor have
to be replaced regularly, and the user’s skin has to be
cleaned and prepared every time before use to ensure
the attachment between the sensors and skin. From
the researcher and developer’s point of view, the pro-
cess of fabricating the electrode array is complicated
and cannot be easily self-made without the specific
tools and experts, but the cEEGrids are commercially
available (e.g. https://exgtools.expeeeriments.io/).

Some studies have utilized designs similar to cEE-
Grids for fabricating around-ear EEG sensors. For
instance, Guermandi et al [60] created an around-
ear EEG system that incorporates their ownC-shaped
electrode arrays made from flexible polyimide PCB
resembling cEEGrids but their reference and ground
electrodes are in a rectangle shape and located parallel
to each other. Souto et al [61] made direct modifica-
tions to the cEEGrid array. Based on their work con-
ducting a sleep analysis using ear-EEG acquired from
the cEEGrid [62], they developed a novel electrode

array called trEEGrid, which is specifically designed
for sleep analysis. This new sensor array is similar to
cEEGrid, with the main difference being its expanded
coverage area. It not only covers the around-ear area
but also includes the regions around the eyes and chin
to facilitate EOG and EMG measurements which are
crucial for comprehensive sleep analysis.

3.2.1.2. Around-ear earpiece
In both [63, 64], designs for around-ear EEG sensors
were presented in the form of earpieces. Although
they use different materials for their earpieces and
electrodes, both designs feature a V-shaped folded
structure with a hook that supports the device against
the back of the pinna. Unlike the first type of around-
ear sensor that uses adhesive tape to attach the sensor
to the around-ear skin area, the electrodes are pressed
against the skin using the spring effect created by
the earpiece’s design. Additionally, the electrically
conductive paste can be applied to ensure skin-to-
electrode contact. The device is then connected to a
processing module using wires.

3.2.1.3. Headphone
In addition to C-shaped electrode arrays and
earpieces, previous research has introduced sev-
eral intriguing wearable EEG systems. Among these
designs are headphones that utilize embedded elec-
trodes within the ear cushions to record around-ear
EEG signals. While headphone-based EEG systems
may be less discreet and bulkier compared to other
designs, they offer the advantage of using the head-
band as an additional electrode site in conjunction
with the around-ear area, enabling a hybrid EEG
approach. Moreover, the headphone cups can serve
as hosts for processingmodules, rendering themcom-
plete wearable around-ear EEG systems in their own
right. For instance, Kaongoen et al [65] presented
an affordable custom-made around-ear EEG head-
phone produced using 3D printing technology. In
this design, all electrodes are integrated into the ear
cushions, while the processing module and battery
are situated within the headphone cups. In addi-
tion, Smartfones (mBrainTrain, https://mbraintrain.
com/smartfones) represents an integrated hybrid
EEG system capable of recording both scalp-EEG
and around-ear EEG signals. This system features
electrodes located on its headband and ear cushion,
respectively. Notably, it also facilitates simultaneous
auditory input and EEG recording, expanding its
range of potential applications [66].

3.2.1.4. Glasses
Glasses represent another wearable design option for
an around-ear EEG device. By utilizing the contact
points on the skin around the user’s ears, the temples
of the glasses can serve as the location for around-
ear EEG sensing electrodes. Similar to the design of
headphones, the coverage area of glasses extends to
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the user’s eyes and nose, enabling the creation of
a hybrid EEG system that incorporates around-ear
EEG functionality. In 2018, Sopic et al [67] intro-
duced the e-Glass, a wearable EEG system in the form
of glasses. While e-Glass’s electrodes are placed on
F7, F8, T3, and T4 based on the 10-20 international
system which are not exactly the around-ear area,
they are in close proximity to the around-ear EEG
positions and therefore are relevant to this review
article. In 2019, Kosmyna et al introduced another
glasses-shaped wearable EEG device called AttentivU
[68]. AttentivU is a hybrid EEG system that integrates
EEG and EOG sensing through electrode placements
extending beyond the ear area. The EEG electrodes
are positioned at the temples of the glasses around the
ears, while the EOG electrodes are placed at the nose
pads. Ground and reference electrodes are situated at
the nose bridge. To provide auditory and vibrotact-
ile feedback, piezoelectric elements were integrated
into the tips of the glasses temples. Both the frames
of e-Glass and AttentivU are constructed from nylon
plastic, which encloses the processing modules and
battery.

3.2.1.5. Headband
Some around-ear EEG sensing devices feature a head-
band design, with the rear sections forming a c-
shaped structure encircling the ears. For instance,
Kaongoen et al [69] introduced a headband-based
around-ear EEG device design in which the c-shaped
sections around the ears are connected by a headband
that wraps around the back of the user’s head. Similar
to headphones and eyeglasses, the headband design
also presents opportunities to expand electrode place-
ment beyond the around-ear area. For instance, Ahn
et al [70] proposed a headband-shaped hybrid EEG
system that incorporates an electrode in the middle
part of the headband, positioned on the user’s fore-
head, in addition to electrodes located behind the ear
area.

3.2.2. Around-ear EEG electrode
3.2.2.1. Electrode types
The majority of reviewed around-ear EEG studies in
this article have employed passive wet electrodes for
measuring around-ear EEG signals. The prevailing
choice of sensing device in around-ear EEG research,
such as cEEGrid, constructs its electrodes using cir-
cular gold-plated tips, pure copper traces, and a
conductive Ag/AgCl-based polymer thick film ink.
Electrolyte gel is applied to acquire around-ear EEG
signals. The earpiece introduced in the work by Pham
et al [64] also utilizes gold-based electrodes with con-
ductive paste. The earpiece in Valentin et al’s study
[63] employs conductive silicone along with con-
ductive paste to leverage its flexible characteristics.
Smartfones, on the other hand, uses saline-soaked
sponge electrodes for data acquisition. This choice
might be attributed to the electrodes’ coverage in the

scalp area, where the application of conductive paste
or gel could be less desirable.

Certain devices, such as trEEGrid, have incorpor-
ated pre-gelled electrodes to enhance user conveni-
ence during self-application. In the case of around-
ear EEG headphones mentioned in [65], as well as
headbands described in [69, 70], single-use foam-
type solid–gel snap electrodes have been adop-
ted. These electrodes feature embedded snap sock-
ets within the device, offering a streamlined equip-
ment preparation process. However, it is import-
ant to note that frequently changing electrodes for
every use could potentially become cost-prohibitive
for practical real-life applications. Of the around-
ear EEG studies examined in this article, only two
examples use dry electrodes: the c-shaped electrode
array detailed in [60], which employs gold electrodes,
and the AttentivU system, which utilizes silver elec-
trodes. Furthermore, it is worthmentioning that only
the electrode array discussed in [60] and the head-
band described in [70] have introduced the allocation
of active electrode electronics to enhance electrode
impedance levels. It is important to note, however,
that no study has directly compared the effectiveness
of various electrode types for around-ear EEG acquis-
ition. Nevertheless, considering the relatively hairless
nature of the around-ear region, one might speculate
that dry electrodes could potentially perform better
compared to their usage in conventional scalp EEG
setups when contrasted with wet EEG electrodes.

3.2.2.2. Electrode number and location
Similar to in-ear EEG studies, there currently is not
a standardized approach for measuring around-ear
EEG. This lack of standardization extends to elec-
trode naming, quantities, and placements. The cEE-
Grid and the electrode array discussed in [60] are
composed of a total of ten electrodes resulting in a
total of 20 electrodes when both ears are equipped
with these devices. Other around-ear EEG device has
less number of electrodes. Electrode number varies
between two to five per one side of the ear in the
other device designs. For example, the hybrid elec-
trode array, trEEGrid, consists of nine electrodes, four
of which are positioned around the ear, three around
the eye to serve as EOG sensors, and the last two
positioned around the chin to measure EMG of the
muscles around the user’s mouth. Earpiece and head-
phone designs usually contain four to five electrodes
while glasses and hairband design which has a nar-
rower coverage area contains one to two electrodes on
each side of the ear.

Reference and ground electrodes are commonly
selected from the electrodes at the most inferior pos-
itions, often situated near the mastoids. However,
some studies utilizing the two aforementioned c-
shaped electrode arrays use the electrodes at the
center of the array, positioned approximately above
the auricularis posterior muscles, as reference and
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ground electrodes. Additionally, certain hybrid EEG
systems that combine electrodes from the around-
ear region with electrodes from other locations make
use of electrodes positioned outside the ear, such as
on the forehead and nose bridge, as reference and
ground sites [68, 70]. Device designs such as head-
phones, glasses, and headbands, encompass larger
areas extending beyond the ear region. This broader
coverage area allows for the practical and esthetic
incorporation of electrodes from out-of-ear positions
into the wearable design, a solution not observed in
the context of in-ear EEG configurations.

Furthermore, although a universally accepted
nomenclature for these electrodes is lacking, a num-
ber of studies have adopted the approach pion-
eered by the cEEGrid investigation. This methodo-
logy employs the letters ‘L’ or ‘R’ to indicate the left
or right ear side, respectively, followed by a numer-
ical sequence from ‘1’ to encompass the total count
of electrodes on each side (e.g. R1, R2,..., R8). This
sequence originates from the most anterior or super-
ior part of the design and progresses incrementally.
While we find this approach commendable, there
are opportunities for refinement to establish it as
a standardized method. First, to enhance compre-
hensiveness and accommodate future advancements,
the nomenclature should extend to encompass the
anterior ear region, defining the elliptical shape that
surrounds the entire ear area. Second, akin to the
standardized 10-20 system employed in conventional
scalp EEG setups, the standardization of around-
ear EEG systems could benefit from maintaining a
fixed percentage-based distance between each elec-
trode position relative to the vertices or co-vertices
of the elliptical region surrounding the ear. This
approach would ensure consistent relative electrode
positions during the fabrication of the sensor array,
even when adapting the sensor size for various head
sizes.

3.3. Signal processing hardware used in ear-EEG
studies
The hardware of an EEG system can be segmented
into three main parts: sensors, the signal processing
module, and the computing module. In our discus-
sions thus far, we have focused on ear-EEG, which
primarily falls within the sensor component of the
EEG system. The ear-EEG acquisition system finds
its full form when complemented by the signal pro-
cessing module. This integral module encompasses
hardware for signal processing, amplification, and
data transmission to the computing module. While
this article will not delve into intricate electronic spe-
cifics of the hardware itself, such as circuit schematics
and detailed electrical components, we will delve into
the EEG amplifier type and its design. This explora-
tion is geared toward assessing the system’s wearabil-
ity, a pivotal aspect that underscores the very applic-
ation of ear-EEG technology.

Despite the strong wearability aspect of ear-EEG
as an EEG sensing technique, themajority of ear-EEG
studies conducted so far, especially those involving
in-ear EEG, have employed professional-grade sta-
tionary EEG amplifiers for their experiments. While
this approach suits applications of ear-EEG where
subjects remain stationary, such as sleep monitor-
ing, it does limit the broader potential of the ear-
EEG method. Introducing a fusion of the ear-EEG
approach with a wearable EEG processing module
could significantly enhance the system’s wearability
and mobility, potentially making it viable for every-
day use. Many studies leverage commercial-grade
wearable EEG equipment such as SMARTINGmobile
amplifier (www.mbraintrain.com) that is used in
most around-ear EEG studies involving cEEGrid,
OpenBCI biosensing board (www.openbci.com) [20,
26, 29, 44, 52, 65, 69], WANDmini [33], or NeuroSky
Mindwave headset (www.neurosky.com) [71, 72] for
their signal processing. However, these studies merely
attach the equipment to the subject’s attire or place
it on a table during experiments, without incorpor-
ating any substantial design efforts to create a seam-
lessly wearable and stylish system. Some studies, nev-
ertheless, has presented a good design incorporating
ear-EEG sensors and wearable EEG equipment. For
example, Bleichner and Emkes developed a wearable
ear-EEG system named nEEGlace, which integrates
cEEGrids and the SMARTING into a commercial
neck speaker [73]. This innovative design approach
not only allows the neck speaker to function as a
mount for the EEG amplifier, bringing the entire sys-
tem closer to the sensors and reducing wire length but
also enables the use of auditory stimuli or feedback for
interface-based applications. Additionally, the integ-
rated microphone of the neck speaker offers the user
voice command options and allows for the recording
of environmental sounds. Furthermore, it is worth
noting that while cEEGrid was initially designed with
ports compatible with the SMARTING, it is pos-
sible to create connecting adapters to enable com-
patibility with other commercially available wearable
EEG devices. This adaptability is demonstrated, for
instance, in [74].

Numerous studies forego reliance on commercial
EEG devices, opting instead to construct their ear-
EEG system with custom-made processing modules
[7, 34, 49, 63, 67, 68, 70]. Specifically for in-ear EEG,
certain designs are compact enough to be integrated
within the earpiece itself, rendering them remarkably
wearable and practical for real-world use [47, 48]. As
for around-ear EEG, some custom-made processing
modules are embedded and encased within wearable
devices like headphones, glasses, and headbands as
discussed in the previous section.

It is crucial to emphasize that a well-designed
wearable EEG system should ensure the proximity of
the sensor and processing module components, min-
imizing potential noise and artifacts stemming from
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lengthy cable connections between the two hardware
sections. It is also worth noting that although numer-
ous studies have presented ear-EEG systems encom-
passing fully wearable setups, there has yet to be a
study that ventures into real-world, out-of-laboratory
environments. Gaining a comprehensive understand-
ing of the practical applicability of ear-EEG neces-
sitates a departure from the controlled confines of
the laboratory, undertaking experiments in authen-
tic everyday settings. This endeavor stands to provide
insights into the effectiveness of ear-EEG beyond the-
oretical constructs, shedding light on its functionality
and reliability in real-life contexts.

4. Applications of ear-EEG

Ear-EEG devices are an attractive alternative to more
conventional scalp-EEG electrodes due to their com-
pactness and wearability in various applications.
Studies have been carried out using ear-EEG devices
in various domains to analyze the feasibility of using
ear-EEG devices, ranging from measuring neuronal
response to stimulus tomonitoring a subject’s state of
mind. In the following section, we split the reviewed
studies into different categories based on their inten-
ded functions, where the first two sections examine
how neurological signals commonly studied in scalp-
EEG appear in ear-EEG, and the later sections on
various monitoring tasks to which ear-EEGs may be
applied. Figure 4 shows the distribution of different
applications of ear-EEG studies.

4.1. Reactive responses
Reactive responses refer to neuro-signals evoked in
response to external stimuli in various forms [75].
While systems that use reactive responses require
more preparation and equipment, they normally dis-
play a clear, differentiable characteristic in signals that
can be matched with the stimuli, making them useful
not only for decoding users’ intentions but also for
evaluating the quality of the measuring device.

4.1.1. Steady-state response
One of the most commonly used reactive responses
is the steady-state response (SSR). SSR refers to an
electrophysiological response of the brain to stim-
uli presented at a specific frequency or range of fre-
quencies, characterized by a periodic waveform that
corresponds to the frequency of the stimulus and its
harmonics [76]. The fixed waveforms induced by the
stimulimake it possible to validate the feasibility of an
EEGacquisitionmethod by calculating the SNRof the
signals at the frequency of the stimuli or by examin-
ing the power spectral density (PSD) plot. The stim-
uli can be given in a diverse manner, including visual,
auditory, or haptic changes.

Several studies have used auditory stimuli to
measure the auditory SSR (ASSR) signals [11, 35,

51, 55] to demonstrate the feasibility of using in-
ear EEG instead of scalp-EEG devices. Kidmose et al
[11] were among the first to examine reactive signals
measured using in-ear silver electrodes and collec-
ted four different evoked responses, including ASSR,
SSVEP, transient auditory evoked potential, and tran-
sient visual evoked potential (VEP). They compared
the SNR of the collected signals to that collected from
wet EEG electrodes placed in the temporal region.
Two different frequencies were used for ASSR (40,
80Hz) and three for SSVEP (10, 15, 20Hz).While in-
ear EEG showed signals with lower amplitude com-
pared to scalp EEG, the SNR was maintained at sim-
ilar levels. Similarly, Goverdovsky et al [35] showed
the feasibility of using a custom-made in-ear device
with memory foam and conductive fabric for meas-
uringASSR andVEP signals. Here, auditory stimuli at
40Hz were provided via an over-the-ear headphone,
with visual stimuli given with a red LED. Bertelsen
et al [77] measured ASSR using both a generic in-
ear device and cEEGrid and examined various elec-
trode configurations to determine the setups that led
to a higher SNR. They found that the ear-Fpz con-
figuration, as well as both within-ear and cross-ear
electrode configurations, resulted in statistically sig-
nificant ASSRs with the generic earpiece. However,
the dry-contact cEEGrid demonstrated a significantly
higher average SNR of the ASSR signal compared to
the generic earpiece.

Around-ear EEG was also examined by
Guermandi et al [60] for its potential use in measur-
ing reactive responses. Using awearable device similar
to cEEGrid, they created a system that included the
computing unit, which carried out feature extrac-
tion and classification on board before transmitting
the results via Bluetooth. They validated their sys-
tem on various event-related potential (ERP) signals,
SSVEP, and ASSR, where SSVEP stimuli were given
via checkerboards flickering at 10, 12, and 15Hz, and
ASSR stimuli were given in the form of white noise
modulated at 40Hz.

Kaveh et al [32] proposed an in-ear EEG record-
ing platform consisting of six electrodes, with elec-
trodes made of silver spray. The device broadcasted
the signals wirelessly, and the authors validated their
system for use in detecting eye blinks, alpha modula-
tion, and ASSR. They found that while existing sys-
tems performed better, the platform displayed suffi-
cient SNR for use.

Christensen et al [18] used in-ear EEG with
six channels to measure ASSR to acquire hearing
threshold levels, using different electrode configura-
tions. They conducted experiments to validate their
approach for both normal and hearing loss subjects.
Chiu et al [78] also used an in-ear EEG made with
conductive fabric and viscoelastic memory foam to
acquire haptic and auditory SSRs, which were used to
perform20 different tasks involving themanipulation
of a smartphone.
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Figure 4. Distribution of different applications of ear-EEG studies.

Kappel and Kidmose [79] compared the signal
qualities of in-ear EEG acquired using different types
of electrodes. They created two types of in-ear dry
contact electrodes using Ag/AgCl and IrO2 respect-
ively and carried out measurement sessions with one
type of electrode in each ear, the position of which
was swapped between sessions. The experiment con-
sisted of measuring the SNR of ASSR evoked by white
Gaussian noise, and both types of electrodes demon-
strated no significant differences in performance.

The effects of different auditory stimuli were
studied by Christensen et al [80, 81]. Using both in-
ear and around-ear electrodes, they measured ASSR
in response to chirp stimuli with two- different repe-
tition rates. While direct comparisons were not made
in the study, high repetition rate chirp stimuli showed
an improved performance to using click, white noise,
or pure tone stimuli when used with ear-EEG for
acquiring 40Hz ASSR. For SSVEP, Mouli et al [82]
used a wireless system using a circular ring LED for
SSVEP stimulus, which contained an onboard com-
puting unit to provide four different frequencies (7,
9, 11, and 13Hz). A single-channel conductive rub-
ber electrode was used together with an OpenBCI
wireless EEG acquisition hardware to collect signals

from inside the ear, resulting in SSVEP signals with
positive SNR values.

4.1.2. ERPs
Apart from SSRs, ERPs are also useful types of
responses. ERPs refer to changes in the EEG in
response to specific stimuli or events in various forms,
such as P300 or N100 signals, which refer to a pos-
itive evoked potential at 300ms after an event and a
negatively evoked potential at 100ms after an event
respectively [83]. Similarly to other reactive signals,
the clearly defined features make them useful for ana-
lyzing the effectiveness of ear-EEGmeasuring systems
[63, 84–86]. ERPs can also offer insights into various
cognitive processes such as attention, memory, and
language. In 2015, Debener et al [4] recorded around-
ear EEG data from an auditory oddball experiment
using two cEEGrid systems and confirmed the occur-
rence of P300 signals for target stimulus, with clas-
sification results up to 70.92%. In the same year,
Bleichner et al [87] used a combination of the scalp,
around, and in-ear EEG electrodes to create a visual
P300 speller. Subjects were instructed to copy one
sentence containing 19 symbols per task, achieving a
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classification accuracy of 88% and an ITR of 8.33 bits
per minute.

ERPs can also be used to identify auditory
attention [88–94]. Recently, Ala et al [95] used an in-
ear EEG device to measure alpha-related synchron-
izations and desynchronizations when continuously
attending to speech, with results suggesting that ear-
EEG devices can be used to judge a subject’s per-
ception of speech. Similarly, Holtze et al [94] meas-
ured EEG from around the ear using cEEGrid during
a selective auditory attention task, where two audit-
ory streams were played simultaneously to the sub-
ject, who was instructed to attend to a specific audio.
Using speech envelope tracking, they were able to
reach average decoding accuracy of 71.3%.

4.2. Active imagery
Recently, there have also been investigative studies
into the use of ear-EEG for measuring active imager-
ies. Active imageries refer to neuronal responses to a
subject’s imagery without an external stimulus. Active
imageries rely solely on the user’s imagination about
a fixed task [75]. Merrill et al [71] defined five men-
tal tasks, where subjects were told to relax, imagine
a song, listen to a fixed frequency, imagine a face,
or imagine a rotating cube, as a mixture of ASSR,
visual imagery, and auditory imagery. They recruited
12 students to carry out these tasks and monitored
the EEG signals using a Neurosky Mindwave Mobile
wireless EEG headset modified to collect signals from
inside the ear, achieving a classification accuracy of
85.4% on average, with six subjects performing at
accuracies over 90%. In 2019, Merrill et al built on
their work further to explore the possibility of using
their mental tasks for authentication, where subjects
were given a custom in-ear device and nine mental
tasks. A task was chosen as a ‘passthought’, with an
overall accuracy of 99.82% when detecting this task
using three electrodes from the left ear. The custom-
made earpiece made the system more robust against
an imposter since the mismatched shape lowered the
classification performance.

4.2.1. Motor imagery
A more commonly used active imagery paradigm
is motor imagery, where users focus on imagining
moving a part of their body without actually mov-
ing the corresponding part. The potential of utilizing
around-ear EEGwas studied by Kim et al in an invest-
igative studywhere they selected channels near the ear
from a standard 10-20 international placement [96].
In this work, they found that EEG signals fromBroca’s
and Wernicke’s area could be used to classify four-
classmotor imagery with comparable performance to
existing setups, suggesting that ear-EEGdevices could
be used for measuring motor imagery paradigms.
An actual in-ear EEG device was manufactured and
tested formotor imagery byWu et al [21]. They hand-
crafted custom-fit ear pieces with Ag/AgCl ink used to

print electrodes for four different positions per ear.
Six subjects were recruited for two class MI classific-
ation using EEGNet, with scalp EEG acquired simul-
taneously to ear-EEG. The acquired ear-EEG signals
were re-referenced in various methods before being
compared to scalp-EEG in intra-subject and inter-
subject classification. While both inter and intra-
subject classification showed lower results for ear-
EEG, fine-tuning themodel with individual data after
inter-subject classification led to classification per-
formance higher than the chance level.

4.2.2. Speech imagery
Another active imagery that has been gathering
attention is speech imagery, in which subjects are
instructed to imagine articulating a word or phon-
eme, without actually moving or producing sound.
Given that the auditory cortex and the language cen-
ters are positioned close to the regions covered by
around-ear EEG, ear-EEG may provide discreet and
effective means of acquiring related signals. In 2021,
Kaongoen et al [69] were the first to propose an
around-ear EEG device to measure speech imagery.
Using a custom-made device with gel electrodes, they
acquired EEG signals regarding four different words
from both around-ear and scalp EEG from ten sub-
jects. Using a multi-layer extreme learning machine,
their around-ear EEGdevice showed comparable per-
formance to scalp-EEG setups for a five-class classi-
fication task consisting of four words and rest. Later,
Kaongoen et al [65] further expanded their work to
suggest a home appliance control system using speech
imagery measured with an around-ear EEG head-
phone. In this work, they proposed a hybrid con-
trol setup, where user inputs were combined with
speech imagery classification results to control a vir-
tual television for three different tasks: controlling the
volume, changing the channel, and turning the power
off.

4.2.3. Visual imagery
Visual imagery, as its name suggests, refers to
responses measured when subjects imagine a cer-
tain image or action happening in front of their
eyes. Subjects are shown an action or an object, and
then later instructed to imagine the said object on
their own. Kuatsjah et al [42] performed a visuo-
motor tracking task, where users were instructed
to keep track of a moving blue box and mimic
its movement by controlling a different yellow box
with a joystick. Two different user states, resting and
tracking, were monitored using a two-channel wire-
less in-ear EEG system. Ten subjects were recruited
for the study and showed average accuracy above
chance level, demonstrating that visuomotor tasks
can be distinguished using in-ear EEG. Similarly for
visual imagery, Kosmyna et al [97] used AttentivU,
a hybrid EEG device in the form of glasses to test
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its effectiveness in visual imagery tasks. The exper-
iment consisted of four different images related to
either coffee or art, repeated 20 times for 14 subjects.
In this work, the authors demonstrated that their
glasses-shaped hybrid EEG collection device shows
comparative visual imagery classification perform-
ance to when using a scalp-EEG device.

4.3. Brain state monitoring
While neuronal responses can be useful for validat-
ing device performance and decoding user intentions,
monitoring the current state of a subject is another
important domain where EEG signals can be effect-
ively used. In such monitoring tasks, the brain signals
of the subject are oftenmeasured over a long period of
time during a specific activity, making the wearability
and comfort of the EEG collection device especially
important.

4.3.1. Sleep monitoring
For sleep monitoring, ear-EEG has been frequently
considered as an alternative to conventional scalp-
EEG due to its compact and discreet form, allow-
ing continuousmonitoring of the user’s sleeping state
without much discomfort. Zibrandtsen et al [13]
compared the signals from in-ear-EEG and scalp-
EEG during different sleep stages. Two experienced
sleep scorers were recruited to analyze 21 h of one
night’s sleep. The reported results showed 90.9% sim-
ilar scores between the two methods, with similar
features shown. A memory-foam in-ear EEG elec-
trodes was used by Looney et al [36] to measure sig-
nals from four healthy male subjects during nap and
showed that their device could distinguish between
N2/N3 sleep stage, as well as non-REM/wake stage
using only ear-EEG signals. Several subsequent stud-
ies have provided evidence supporting the utility of
in-ear EEG for sleep staging [15, 19, 40, 41, 98–100].

Around-ear EEG has also been studied as an
alternative to polysomnography. Sterr et al [101] used
cEEGrid to measure around-ear EEG during sleep
from 20 subjects simultaneously to standard poly-
somnography. Different sleep parameters regarding
sleep maintenance and architecture were examined
from both signals for the evaluation of quality. Both
systems showed similar results to each other, suggest-
ing that cEEGrid can provide a viable alternative to
existing methods for recording sleep signals.

Recently, Mikkelsen et al [102] performed a study
on the performance of self-applied in-ear EEG for
sleep monitoring. Ten subjects were recruited from a
previous study performed by an expert, with 12 sleep
recording sessions carried out by each participant
at home. Three different metrics were used to score
the quality of sleep in this study: total sleep, sleep
latency, and sleep efficiency, for which participants
performed similarly to expert-applied experiments
even when carrying out the experiment themselves
[103]. Another work by Kjaer et al [104] analyzed

the effectiveness of automatic sleep scoring with an
in-ear EEG device. In this paper, they reported that
repeated automatic sleep scoring with an in-ear EEG
device outperforms manually labeled polysomno-
graphy consisting of EEG, EMG, and EOG signals.
While both methods perform similarly after the first
night, ear-EEG has been shown to perform better for
six out of eight sleep metrics after two nights.

Furthermore, Henao et al [46] carried out invest-
igations on implementing a closed-loop stimulation
system during sleep to induce slow oscillations. Using
an in-ear EEG device, they proposed a system that
detects sleep slow oscillation and then employs aud-
itory stimulation to enhance the detected oscillation.
In their system, two scalp electrodes and one bipolar
in-ear electrode in both ears were used to measure
the EEG activities, and a wired headband speaker was
used to deliver the auditory stimuli. They evaluated
their system on 24 healthy subjects and showed pos-
itive results for inducing slow oscillations for eleven
subjects.

4.3.2. Mental load
Several works have also explored the possibility of
monitoring the subjects’ state via ear-EEG. Eye state
is one of themost clearly observable responses in EEG
signals; when eyes are open, EEG signals show an
alpha attenuation response (AAR), referring to alpha
band power decreasing. Such characteristic allows eye
states and the corresponding AAR to be used to check
the signal quality of both in-ear [32, 34, 49, 105] and
around-ear [4, 59, 106] devices.

Some studies have used ear-EEG for measuring
stress, usually involving mental tasks. Ha et al [107]
combined three different biosignals: EEG, hemo-
encephalography (HEG), and heart rate variability
(HRV) to monitor stress during an n-back task. EEG
signals were measured using two channels in an in-
ear device and six channels in a forehead headband,
with 16 channels and two channels for HEG andHRV
measurements respectively. The heart rate sensors
were also placed on the in-ear device. A hybrid EEG
system in the form of a headband was suggested by
Ahn et al [70] for stress assessment, measuring EEG
and ECG from behind the ear. Stress was induced
with two different mental tasks, the Stroop color-
word test andmental arithmetic (MA) tasks, and PSD
extracted from EEG as a feature for classification,
achieving an accuracy of 87.5% for binary classific-
ation of stress/non-stress state.

4.3.3. Vigilance
Vigilance is another mental state that has been
researched with ear-EEG [33, 108]. Hwang et al [109]
was the first work to perform alertness-drowsiness
classification using in-ear EEG in a driving scen-
ario. Various biosignals, scalp EEG, ECG, PPG, and
galvanic skin response (GSR) were measured simul-
taneously for comparison in the study, with a single
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metallic EEG electrode placed in the right ear canal
with gel applied for in-ear EEG acquisition. Thirteen
subjects were recruited to drive a simulation of a car
on a highway at a given fixed speed, with the driver’s
reaction time and facial characteristics recorded to
acquire alertness and drowsiness epochs. Hong et al
[110] carried out a similar study, with drowsiness
measured using a multi-modal device consisting of
in-ear EEG, PPG, and ECG. The performance of the
device was compared to results from a standard 16-
channel scalp-EEG for 16 subjects in a virtual driv-
ing task. The proposed system was shown to per-
form at a similar level but with a shorter data acquisi-
tion length. Kosmyna et al [68] used their proposed
glass device to not only detect drowsiness but also
provide feedback to redirect vigilance. Their device
consisted of two EOG sensors at the nose pad and two
EEG channels at around TP9 and TP10, with a piezo-
electric element at the tip of the glasses for auditory
and vibrotactile feedback. Twenty participants were
recruited to perform a driving simulation task, with
drowsiness level rated using the Karolinska sleepiness
scale. Drowsiness was judged based on an unsuper-
vised threshold-basedmethodon the number of blink
and fatigue index acquired from EEG signals, and
two different biofeedbacks, auditory and vibrotactile,
given to redirect vigilance.

4.3.4. Emotion recognition
Emotion recognition has emerged as a notable
research domain, although there exists a limited num-
ber of studies that have explored the utilization of ear-
EEG for this purpose. Li et al [72] was the first to
propose a low-cost in-ear EEG device, made by refit-
ting a Neurosky Mindset EEG headset, to distinguish
three emotion states: negative, relaxed, and excited.
Twelve subjects were recruited for the study, whowere
instructed to watch a video and listen to music to
induce emotional changes. The outcomes of the study
suggested that single-channel in-ear EEG can be suit-
able for emotional recognition, albeit with poor per-
formance in terms of arousal recognition. Another
in-ear EEG device was suggested by Athavipach et al
[52] for the classification of four discrete emotional
states. Twelve participantswere recruited, with images
from the international affective picture system and
the Geneva affective picture database used as visual
emotional stimuli and classical music pieces selec-
ted from another auditory emotional research used
as auditory stimuli. Compared to electrode channels
fromT7 andT8, the in-ear EEG showed no significant
difference in performance.

4.3.5. Epileptic seizure detection
Traditional scalp EEG recordings are the gold stand-
ard for detecting epileptic seizures, but they have lim-
itations, such as being affected bymuscle artifacts and
being unable to detect deep-seated epileptic foci. In
contrast, ear-EEG recordings can be less affected by

artifacts and can be worn more comfortably for a
longer period of time. Recent studies have demon-
strated the feasibility and effectiveness of using ear-
EEG for seizure detection in patients with epilepsy.
Zibrandtsen et al [13, 111] used an in-ear device
with four electrodes per ear to record signals from
15 subjects suspected to suffer from seizure, showing
no significant differences in performance in seizure
detection when compared to conventional scalp-EEG
systems.

Around-ear EEG has also been frequently used
for seizure detection. You et al [112, 113] suggested
a cross-head electrode layout, with two electrodes in
form of a gold cup placed behind each ear. Fifty-
four patients were recruited for the study, with eval-
uations carried out through visual inspection by a
neurologist, subject-independent classification, and
subject-dependent classification. The results showed
that around-ear EEG detected seizures better com-
pared to patients’ self-reports. Vadecasteele et al [114]
similarly employed cross-head channels around the
ear to detect seizures using an unsupervised gener-
ative adversarial network (GAN). Spectrograms from
the acquired signals were used as the input to train
a deep convolutional GAN to learn the normal state.
The trained GAN was then used to detect an abnor-
mality, with an accuracy of 96.6% [115].

Due to the uncertain nature of seizures and when
theymay occur, studies involving the long-termuse of
ear-EEG for monitoring are essential. Several works
investigated the robustness of devices with ear-EEG
when measured over a continuously long period of
time [116]. Nielson et al [117] carried out continuous
recording of wearable EEG, ECG, and accelerometry
in 30 patients, who were given the freedom to move
around. Electrodes were placed bilaterally behind the
ear on the upper mastoid, with reference placed on
Cz. Classification using a support vector machine
showed an improved performance to using only EEG,
with high sensitivity and low false alarm rate. In addi-
tion,Musaeus et al [22] introduced an in-ear EEG sys-
tem designed for the long-termmonitoring of epilep-
tiform activity in patients with Alzheimer’s disease.
They investigated the comfort of the patients wearing
the in-ear EEG device by recruiting ten patients suf-
fering frommild tomoderate cases of Alzheimer’s dis-
ease. Three sessions of EEG recordings were carried
out, each being up to 48 h long with several months
between the sessions. All patients managed to wear
the device for over 24 h, and four patients completed
the study.

In summary, this section provides an overview
of the capabilities of ear-EEG as a tool for acquir-
ing various types of EEG signals commonly util-
ized in neuro-engineering and biomedical studies,
along with its applications.While the potential of ear-
EEG is evident from these studies, it is important to
acknowledge that the field is still in its nascent stages.
Given the multitude of variables that can influence

15



J. Neural Eng. 20 (2023) 051002 N Kaongoen et al

research outcomes—including subjects, device con-
figurations, and environmental factors—it becomes
invaluable to observe results from diverse studies to
validate consistent findings. Nonetheless, the exist-
ing body of ear-EEG research, particularly within the
active imagery and brain state monitoring domains
such as emotion recognition, remains limited. As a
result, drawing definitive conclusions from this emer-
ging field should be done with careful consideration.
Moreover, when adopting the ear-EEG methodology
within a new paradigm, it is advisable to directly
compare its performance against the conventional
scalp-EEG method using the same experiment con-
figurations. This comparative analysis would facilit-
ate a better understanding of how effectively ear-EEG
performs in relation to the well-established conven-
tional scalp-EEGmethod, which has amore extensive
research foundation.

5. Limitations of ear-EEG andmethods to
overcome them

While the previous section highlights the potential
of ear-EEG in various applications, it is important
to acknowledge that ear-EEG techniques have cer-
tain drawbacks in comparison to conventional EEG
acquisition methods. These limitations may affect
their performance in specific applications, particu-
larly those that requiremonitoring of brain activity in
regions further away from the ears. To overcome these
limitations, various methods and algorithms have
been developed specifically to improve the quality of
the ear-EEG technique. In this section, we will discuss
some of these techniques that have been reported in
previous literature.

5.1. Re-referencing methods
EEG acquisition conventionally requires a reference
electrode. The electrical potential recorded at each
scalp electrode is the result of the difference in elec-
trical potential between that electrode and the refer-
ence electrode, so the choice of reference electrode
can affect the interpretation of EEG data [1]. In ear-
EEG techniques, the choice for the reference elec-
trode is limited due to the small coverage of the com-
pact structure of the ear-EEG devices. As discussed
in section 3, in the absence of any external out-of-ear
electrode, the reference and ground points of an ear-
EEG system are typically situated within the concha
for in-ear EEG setups, and at the lowermost posi-
tions for around-ear EEG configurations. Researchers
may also re-reference EEG data post hoc to another
reference point to produce different interpretations
of the data or improve the quality of the signal. We
will review the re-referencing techniques employed
in ear-EEG research, covering both traditional and
innovative methods, and explore the implications of
different approaches.

The common average referencing (CAR) tech-
nique is a commonly used EEG re-referencing tech-
nique that involves creating an average of all EEG
channels and subtracting the resulting signal from
each channel [15]. However, this technique assumes a
uniform spatial distribution of the electrodes, which
is not applicable in non-traditional electrode place-
ments such as ear-EEG techniques. In these cases, the
average referencemay be biased towardsmore densely
populated electrode areas, leading to suboptimal res-
ults. To address this issue, researchers have proposed
alternative re-referencing techniques. For instance,
Kappel et al [118] conducted a study on ASSR using
in-ear EEG and suggested a method called optim-
ized reference configuration (ORC) that assigns dif-
ferent weights to each electrode in the re-referencing
process. The weights were trained by maximizing
the SNR of the first harmonic of the steady-state
response from the training dataset. They also pro-
posed a location weighted referencing (LWR) tech-
nique that assigns separate weights to the electrodes
based on the location and distribution of the elec-
trodes. Specifically, electrodes in the concha and canal
areas of the ear are weighted differently. Results from
the study indicate that theORCmethod produced the
highest SNR of the steady-state response compared
to the CAR and LWR methods. In 2019, Choi and
Hwang [106] conducted a comprehensive compar-
ison of various re-referencing techniques used in pre-
vious studies. They used around-ear-EEG open data-
sets recordedwhile subjects performed an alphamod-
ulation task, and two active mental tasks: MA and
mental singing. Five re-referencing techniques that
were used in the previous ear-EEG research including
(1)CAR [15], (2) contralateral-mean (using themean
of contralateral electrodes as the reference point)
[12], (3) ipsilateral-mean (using the mean of ipsi-
lateral electrodes as the reference point) [16], (4)
contralateral-bipolar (using bipolar configuration on
contralateral ear sides) [119], and (5) ipsilateral-
bipolar (using bipolar configuration on ipsilateral ear
sides) [119], were applied to the data. The results
showed that the contralateral-meanmethod provided
statistically higher SNRs and classification results in
all mental tasks, suggesting that it might be an effi-
cient choice of re-referencing method for the ear-
EEG data and thereby increase the quality of the
ear-EEG data. However, it should be noted that the
contralateral-mean method does not apply to ear-
EEG systems that consist only of one side of the user’s
ear or systems in which electrodes from both ears are
not physically connected.

Additionally, it is worth noting that active EEG
electrodes do not require a common reference elec-
trode. This is because active electrodes have a built-
in preamplifier that amplifies the signal and sends
it directly to the recording device, whereas passive
electrodes require a reference electrode to provide
a baseline for the recording [120]. With active
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electrodes, each electrode acts as its own reference,
allowing for a more flexible and scalable recording
setup. An active wearable ear-EEG system presented
in [70] showed an innovativeway to acquire both EEG
and ECG data using only two active channels each
located behind each ear and one reference electrode
located at the forehead. The system utilized a refer-
ence configuration that involves subtracting the ref-
erence signal from the signal obtained from the left
and right active electrodes, respectively, to acquire
two EEG signals. The ECG signal is obtained by sub-
tracting the signal from the right active electrode from
that of the left electrode. This reference setup ensures
that the EEG signals are spatially balanced, which is
essential for obtaining asymmetry features from the
EEG data. Furthermore, the system enables the sim-
ultaneous acquisition ofHRV features fromECGdata
along with EEG data, without requiring additional
electrodes. These features made the proposed system
suitable for stress assessment in daily life.

5.2. Noise cancellation and artifact removal
techniques on ear-EEG
Creating a wearable EEG system presents significant
obstacles, primarily due to noise and artifacts. In con-
trast to a controlled laboratory environment, real-
world scenarios are exposed to numerous sources of
noise and artifacts, both internal and external. Noise
cancellation and artifact removal techniques play vital
roles in the development of a reliable wearable EEG
system. These methods filter out unwanted noise and
artifacts from the EEG signal, leading to more accur-
ate and dependable signals and allowing the extrac-
tion of meaningful insights. As a result, integrating
these techniques is essential for the efficacy and suc-
cess of wearable EEG systems.

While there are some variations in the noise
and artifacts observed in ear-EEG compared to con-
ventional scalp-EEG, such as ear-EEG being less
affected by eye blinks and movements but more
susceptible to artifacts associated with jaw muscle
contractions, the algorithms used in scalp-EEG can
generally be applied to ear-EEG with only minor
modifications [121]. In fact, the study in [122]
demonstrated that independent component analysis
(ICA) can be used to detect artifacts in around-ear
EEG obtained from cEEGrids and the artifact ICA
components showed similar characteristics to those
of scalp-EEG data. Despite the lack of noise cancella-
tion or artifact removal techniques tailored specific-
ally to ear-EEG data, we will review some innovat-
ive approaches that have been successfully applied to
wearable ear-EEG systems. In their 2020 paper, YE
Lee and colleagues proposed a method for remov-
ing artifacts from EEG signals called constrained
ICA with online learning (cIOL) [123]. The cIOL
method uses constrained ICA to estimate artifacts
from the EEG signals using reference signals, and
recursive least squares to extract an artifact-free EEG

signal. The reference signals used in their experi-
ment were obtained from isolated electrodes, which
were blocked with high-resistance material to pre-
vent brain signals from passing through. In their
study, four electrodes, two from each side of the
cEEGrids, were used as the isolated electrodes. The
authors evaluated the performance of the cIOL
method in ERP and SSVEP experiments where sub-
jects were walking on a treadmill and compared it
to other state-of-the-art artifact removal methods,
such as artifact subspace reconstruction (ASR) [124],
Riemannian ASR [125], and fast-Fourier-transform-
based methods [126]. The results showed that the
cIOLmethod achieved the best classification accuracy
across all experimental settings. Moreover, the results
showed that using isolated signals as reference sig-
nals for estimating the artifacts produced slightly bet-
ter outcomes than using IMU data. Nonetheless, this
method has only been tested with motion artifacts
and may not perform as effectively with other types
of noise or artifacts that could be present in real-life
scenarios. The study in [45] added two microphone
sensors (different positions) and an accelerometer
to the viscoelastic in-ear-EEG device to capture the
noises. They combined noise-assisted multivariate
empirical mode decomposition (NA-MEMD) with
normalized least mean square adaptive noise cancel-
lation (NLMS-ANC) technique to produce an innov-
ative artifact removal method for the ear-EEG data.
In summary, their method involved inputting sig-
nals from ear-EEG electrodes, two microphones, and
an accelerometer to the NA-MEMD to generate the
intrinsic mode functions (IMFs). Then, each pair
of ear-EEG IMF and one of the noise-sensor IMFs
is fed independently to the NLMS-ANC to clean
the ear-EEG IMFs, and finally, the clean ear-EEG
IMFs are then added up together again to recon-
struct the denoised ear-EEG data. Results showed
that the denoised EEG signals demonstrated reduced
power in the frequency range where artifacts were
present. Moreover, the performance of different noise
sensors varied for the tested artifacts. Specifically,
microphones were found to be more sensitive to arti-
facts caused by internal motion within the ear canal,
such as chewing, whereas accelerometers were more
effective for artifacts resulting from full-body move-
ments, such as walking. Both methods described in
the studies above require sensors that are separate
from the EEGelectrodes to capture noise. It is possible
that combining multiple types of noise sensors could
enhance the effectiveness of these methods. However,
the tradeoff between device performance, cost, and
wearability must be carefully considered.

Apart from using noise cancellation and artifact
removal methods, the hardware design also plays
a crucial part in the quality of the EEG signal as
well. In section 3, we discussed the design aspects of
wearable devices, including electrode selection, and
device shape and material, all of which contribute
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to improving the quality of the ear-EEG signals and
reducing noise and artifacts. Electrical circuit tech-
niques, such as impedance boosting, DC servo loop,
and active shielding can also be used to improve the
signal quality as well [24, 27, 127, 128]. Corrected
double sampling (CDS) is typically implemented in
analog circuits by allowing a capacitor in the ampli-
fier feedback loop to reset and store noise observed
at the front end with the input electrode disconnec-
ted. Upon reconnecting the electrode to sample the
noise stored in the capacitor, the noise from the first
sample is canceled from the electrode sample [105].
CDS is commonly utilized to reduce the impact of 1/f
and thermal noises. In 2022, Paul et al [105] proposed
utilizing a digital version of the CDS method for an
in-ear EEG system. They investigated various weight-
ing schemes on the CDS reference samples (distinct
from the reference used in the EEG acquisition pro-
cess) to subtract them from real samples and gener-
ate denoised EEG samples. The study demonstrated
that the digital CDS method efficiently reduced 1/f
noise and kT/C thermal noise from the ear-EEG data.
The Kaiser-22 window with a width of 20 exhib-
ited the best performance, resulting in a 71.1% noise
reduction.

5.3. Enhancing ear-EEG performance with
machine learning and signal processing techniques
There exist several methods for advancing the devel-
opment of wearable ear-EEG systems. A notable
research domain pertains to enhancing the device
itself, where efforts are dedicated to developing
ear-EEG sensors and circuits or refining the sys-
tem’s design to make it more wearable and user-
friendly. Another research area entails refining sig-
nal processing techniques to eliminate noise and gain
more meaningful insights from ear-EEG data. In this
section, we will review machine learning approaches
tailored to enhance the performance of the ear-EEG
system.

One of the primary limitations of ear-EEG tech-
niques is their limited coverage area. Certain brain
signals dominate in specific regions, such as the
visual cortex in the occipital area where SSVEP, com-
monly used in BCI systems, is prominent. However,
when EEG is obtained from locations farther away
from its dominant region, such as the ear area,
its signal quality decreases [6, 129]. This can res-
ult in suboptimal performance of the ear-EEG tech-
nique in specific applications compared to conven-
tional methods. To address this challenge, one poten-
tial solution is to establish a relationship between
ear-EEG and conventional scalp-EEG and use the
acquired ear-EEG data to estimate EEG data at the
target brain area, thereby enhancing the perform-
ance of the ear-EEG system. It is demonstrated in
[5] using in-ear EEG data acquired from several
experimental schemes, including alpha-attenuation,
auditory onset, and mismatch-negativity responses,

that there is high mutual information between the
ear-EEG and scalp-EEG data, especially in the tem-
poral region. It is also shown that it is possible to
use a linear model to predict scalp-EEG data from
the given ear-EEG data when a shared common ref-
erence electrode is used between the two methods.
Furthermore, employing a forward model, the study
in [6] also demonstrates the sensitivity of around-
ear EEG to different cortical sources and draws the
same conclusion that ear-EEG is most sensitive to the
sources in the temporal cortex.

Building on this concept, Kwak et al [129] pro-
posed an error correction regression (ECR) frame-
work that enhances the performance of ear-EEG in
detecting SSVEPs. The ECR framework utilizes estim-
ated EEG signals on the occipital area by establishing
linear and nonlinear relations between the ear-EEG
and scalp-EEG. The framework comprises two regres-
sion processes. Firstly, the first regression process is
trained to predict the scalp-EEG samples from the
ear-EEG samples. Secondly, using the error calculated
from the first regression process, the second regres-
sion process is trained to estimate the errors from the
given ear-EEG samples. Finally, the error-corrected
outputs are calculated by subtracting the predicted
scalp-EEG samples from the estimated error values.
To select the regression model in the first process, the
authors evaluated three methods including multiple
linear regression, ridge regression (RR), and kernel
RR (KRR). They selected the regression model that
gave the highest correlation value between the pre-
dicted and actual scalp-EEG samples. In the second
process, KRR was used as the regression model. The
authors’ results demonstrated that ECR significantly
improves the classification accuracy of ear-EEG in the
SSVEP-based experiment and the improvementswere
the highest compared to using a regression model
solely. Israsena and Pan-Ngum [130] developed a dif-
ferent approach by estimating scalp-EEG data from
ear-EEGdata in a different domain to enhance SSVEP
classification accuracy. Their approach involved a
regression step that was incorporated into the convo-
lutional neural network (CNN) model after the out-
put layer to re-estimate the softmax values before gen-
erating the classification result. To be precise, they
fed the EEG data from T7, T8, and Oz channels into
a CNN model individually to obtain their respective
softmax values. Next, they trained a regression model
to estimate the Oz data’s softmax values from those of
the T7 and T8 data. Finally, during testing, the regres-
sion model re-estimated the softmax values of the T7
and T8 data before generating the classification result
using the typical approach. Their technique demon-
strated superior SSVEP classification accuracy com-
pared to using data from T7 and T8 channels alone
without the regression step. In the future, it would
be fascinating to observe the further development
and application of this method with other types of
brain signals to evaluate the ear-to-scalp prediction
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method’s concept more comprehensively. Liang et al
[131] proposed another solution to the lower SSVEP
response in the ear area compared to the occipital
area. They hypothesized that there is a phase differ-
ence in the SSVEP response in the ear area between
the left and right visual field stimulation from the
SSVEP biphasic stimulation paradigm. To enhance
the SSVEP response in the ear area, they adjusted the
phase of the left and right visual field stimulus by
estimating the phase difference between the SSVEPs
from the two types of stimuli obtained from the ear
area. By adding the estimated phase difference to the
initial phase of the right visual field stimulus, the new
phase difference would become zero, enhancing the
sum response from the left and right visual stimuli
in the ear area and improving the SSVEP recognition
performance of the ear-EEG. Theirmethodwas valid-
ated, and the results showed that the phase optimizing
method in the SSVEP biphasic stimulation paradigm
significantly increased the SSVEP classification accur-
acy of the ear-EEG.

Additionally, several research works have focused
on developing classification models to improve the
performance of ear-EEG systems. While few clas-
sification algorithms are specific to ear-EEG, some
novel algorithms have been proposed to enhance the
performance of ear-EEG systems. This review dis-
cusses such algorithms, which can also apply to other
types of EEG systems. One such algorithm proposed
by Lee and Lee [132] is a two-stream deep neural
network that combines a CNN stream for extract-
ing frequency-domain features and a long-short term
memory stream for extracting time-domain features.
The extracted features from both streams are then
combined to map the classification output. This
method was successfully validated in SSVEP-based
BCI experiments conducted in an ambulatory envir-
onment. Zhu et al [133] re-implemented the well-
known EEGNet [134], a compact CNN designed
for EEG-based BCI, by experimenting with differ-
ent kernel numbers and utilizing an ensemble learn-
ing strategy to enhance the performance of ear-
EEG, which has weak SSVEP compared to the con-
ventional method. Ensemble EEGNet showed sig-
nificantly higher classification results compared to
canonical correlation analysis and normal EEGNet
with different kernel numbers. In 2021, Lee [135]
proposed an ensemble-based approach that utilizes
CNNs to classify ERP responses from ear-EEG sig-
nals. This method involves dividing non-target data
samples into four groups and forwarding one group
of non-target data and target data to each ensemble
model, which is a three-layer CNN. The network then
updates the weights by averaging the gradients of
all four groups and combines the predictions of all
four ensemble models to produce the final prediction
output. This approach also addresses the imbalance
problem of the ERP data, and the results were satis-
factory even though the experiments were conducted

in an ambulatory environment. Recently, Borup et al
[136] proposed a novel approach to enhance the per-
formance of sleep-state scoring using ear-EEGdata by
employing ensemble learning and knowledge distilla-
tion. The method consisted of two phases. In the first
phase, they trained a set of individual baselinemodels
(SeqSleepNet [137]) using classical supervised learn-
ing with different random initialization. Ensemble
models were then formed by taking the unweighted
average of the predictions from multiple individual
models. In the second phase, the ensemble model was
used as a teacher model in the knowledge distilla-
tion process. Pseudo labels generated from the teacher
model, along with optionally labeled training data,
were used to train a single student model. The res-
ults demonstrated a notable improvement in accuracy
from ensemble models compared to the individual
baseline models. Moreover, without any alteration in
the model architecture, their semi-supervised know-
ledge distillation approach enabled a single student
model to retain 50% to 100% of the improvements
obtained by the ensemblemodels, while also reducing
the computational cost.

6. Conclusion

In conclusion, the ear-EEG technology has rapidly
gained attention in recent years due to its excellent
wearability, making it a promising alternative to con-
ventional EEG methods. Ear-EEG offers a conveni-
ent and non-invasive way to capture brain activity,
which is essential for applications in the real world
outside research and clinical settings. Our compre-
hensive review of the literature on ear-EEG highlights
the significant advances made in this technology,
including the development of novel ear-EEGwearable
device designs, its efficient performance comparable
to the conventional EEG setup in the various types
of applications in BCI research fields, and signal pro-
cessing and analyzing techniques that could increase
the performance of ear-EEG.

However, despite these advancements, ear-EEG
still faces challenges and limitations. The main dis-
advantage of ear-EEG is its small and specific cover-
age area, which may limit the quality of signal types
it can detect and the applications it can offer. To
overcome this challenge, future research should focus
on signal processing or machine learning techniques
such as signal estimation techniques that estimate
EEG at a specific brain area using only data acquired
from ear-EEG, which could enhance the quality of
ear-EEG signals. Furthermore, noise reduction and
artifact removal techniques are essential for wear-
able EEG systems, and their integration with ear-EEG
technology will be crucial to achieving the ultimate
goal of making ear-EEG a viable brain-monitoring
system that can be used in daily life.

It is important to note that ear-EEG research is
still in its early stages, and more studies should be
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conducted to generalize the results. Future studies
should also focus on performing experiments in real-
world settings, which is the main purpose of the ear-
EEG method. Such studies will provide insight into
the practical applications of ear-EEG in various real-
world contexts. Despite these challenges, the potential
of ear-EEG technology cannot be underestimated.We
believe that it will continue to generate interest and
open up new avenues of research in the coming years.

Overall, ear-EEG technology represents a prom-
ising and exciting direction for the field of wearable
EEG systems and neural engineering, andwe look for-
ward to seeing further developments and applications
in the future.
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